SMEFTatNLO not converging with top and photon in final state

Asked by Michele Mormile

Dear experts,

I am using MG5 3.3.2 with the SMEFTatNLO model to generate the tWa process at NLO in QCD. The restrict_NLO.dat card that I am using is pasted at the bottom.
The generation of the pp->tWa process does not converge, as during generation there are jobs stuck indefinitely. To factor out that this could be due to the Diagram Removal I am applying, I have tested the same with generating the tqa process, but also in this case the generation does not converge. A noticeable difference is that everything works well in case I try to generate the tta process.
I paste here also the run_banners for tWa and tqa.
For tqa, I have tried setting nlo_mixed_expansion at both True and False and both giving the coupling orders linear or squared in the proc_card.dat. I am not sure what it should be of the acknowledged_v3.1_syntax.
Is there something I am not considering with the generation of these processes?
Thank you for your help.
Best,
Michel

restrict_NLO.dat

######################################################################
## PARAM_CARD AUTOMATICALY GENERATED BY THE UFO #####################
######################################################################

###################################
## INFORMATION FOR SMINPUTS
###################################
Block SMINPUTS
    2 1.166370e-05 # Gf
    3 1.184000e-01 # aS

###################################
## INFORMATION FOR MASS
###################################
Block MASS
    6 1.720000e+02 # MT
   23 9.118760e+01 # MZ
   24 7.982440e+01 # MW
   25 1.250000e+02 # MH
## Not dependent paramater.
## Those values should be edited following analytical the
## analytical expression. Some generator could simply ignore
## those values and use the analytical expression
  22 0.000000 # a : 0.0
  21 0.000000 # g : 0.0
  9000001 0.000000 # ghA : 0.0
  9000005 0.000000 # ghG : 0.0
  12 0.000000 # ve : 0.0
  14 0.000000 # vm : 0.0
  16 0.000000 # vt : 0.0
  11 0.000000 # e- : 0.0
  13 0.000000 # mu- : 0.0
  15 0.000000 # ta- : 0.0
  2 0.000000 # u : 0.0
  4 0.000000 # c : 0.0
  1 0.000000 # d : 0.0
  3 0.000000 # s : 0.0
  5 0.000000 # b : 0.0
  9000002 91.187600 # ghZ : MZ
  9000003 79.824400 # ghWp : MW
  9000004 79.824400 # ghWm : MW
  250 91.187600 # G0 : MZ
  251 79.824400 # G+ : MW

###################################
## INFORMATION FOR DECAY
###################################
DECAY 6 1.508336e+00
DECAY 23 2.495200e+00
DECAY 24 0.
DECAY 25 0.
## Not dependent paramater.
## Those values should be edited following analytical the
## analytical expression. Some generator could simply ignore
## those values and use the analytical expression
DECAY 22 0. # a : 0.0
DECAY 21 0. # g : 0.0
DECAY 9000001 0. # ghA : 0.0
DECAY 9000005 0. # ghG : 0.0
DECAY 12 0. # ve : 0.0
DECAY 14 0. # vm : 0.0
DECAY 16 0. # vt : 0.0
DECAY 11 0. # e- : 0.0
DECAY 13 0. # mu- : 0.0
DECAY 15 0. # ta- : 0.0
DECAY 2 0. # u : 0.0
DECAY 4 0. # c : 0.0
DECAY 1 0. # d : 0.0
DECAY 3 0. # s : 0.0
DECAY 5 0. # b : 0.0
DECAY 9000002 0. # ghZ : WZ
DECAY 9000003 0. # ghWp : WW
DECAY 9000004 0. # ghWm : WW
DECAY 250 0. # G0 : WZ
DECAY 251 0. # G+ : WW

###################################
## INFORMATION FOR DIM6
###################################
Block DIM6
    1 1.000000e+03 # Lambda
    2 0.0 # cpDC
    3 0.0 # cpWB
    4 0.0 # cdp
    5 0.0 # cp
    6 0.0 # cWWW
    7 0.0 # cG
    8 0.0 # cpG
    9 0.0 # cpW
   10 0.0 # cpBB

###################################
## INFORMATION FOR DIM62F
###################################
Block DIM62F
    1 0.0 # cpl1
    2 0.0 # cpl2
    3 0.0 # cpl3
    4 0.0 # c3pl1
    5 0.0 # c3pl2
    6 0.0 # c3pl3
    7 0.0 # cpe
    8 0.0 # cpmu
    9 0.0 # cpta
   10 0.0 # cpqMi
   11 0.0 # cpq3i
   12 0.0 # cpQ3
   13 0.0 # cpQM
   14 0.0 # cpu
   15 0.0 # cpt
   16 0.0 # cpd
   19 0.0 # ctp
   22 0.049973 # ctZ
   23 0.761901 # ctW
   24 0.0 # ctG

###################################
## INFORMATION FOR DIM64F
###################################
Block DIM64F
    1 0.0 # cQq83
    2 0.0 # cQq81
    3 0.0 # cQu8
    4 0.0 # ctq8
    6 0.0 # cQd8
    7 0.0 # ctu8
    8 0.0 # ctd8
   10 0.0 # cQq13
   11 0.0 # cQq11
   12 0.0 # cQu1
   13 0.0 # ctq1
   14 0.0 # cQd1
   16 0.0 # ctu1
   17 0.0 # ctd1
   19 0.0 # cQQ8
   20 0.0 # cQQ1
   21 0.0 # cQt1
   23 0.0 # ctt1
   25 0.0 # cQt8

###################################
## INFORMATION FOR DIM64F2L
###################################
Block DIM64F2L
    1 0.0 # cQlM1
    2 0.0 # cQlM2
    3 0.0 # cQl31
    4 0.0 # cQl32
    5 0.0 # cQe1
    6 0.0 # cQe2
    7 0.0 # ctl1
    8 0.0 # ctl2
    9 0.0 # cte1
   10 0.0 # cte2
   13 0.0 # cQlM3
   14 0.0 # cQl33
   15 0.0 # cQe3
   16 0.0 # ctl3
   17 0.0 # cte3
   19 0.0 # ctlS3
   20 0.0 # ctlT3
   21 0.0 # cblS3

###################################
## INFORMATION FOR DIM64F4L
###################################
Block DIM64F4L
    1 0.0 # cll1111
    2 0.0 # cll2222
    3 0.0 # cll3333
    4 0.0 # cll1122
    5 0.0 # cll1133
    6 0.0 # cll2233
    7 0.0 # cll1221
    8 0.0 # cll1331
    9 0.0 # cll2332

###################################
## INFORMATION FOR LOOP
###################################
Block LOOP
    1 9.118800e+01 # MU_R

###################################
## INFORMATION FOR RENOR
###################################
Block Renor
    1 5.550000e+02 # mueft

###################################
## INFORMATION FOR YUKAWA
###################################
Block YUKAWA
    6 1.720000e+02 # ymt
#===========================================================
# QUANTUM NUMBERS OF NEW STATE(S) (NON SM PDG CODE)
#===========================================================

Block QNUMBERS 9000001 # ghA
        1 0 # 3 times electric charge
        2 -1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 9000002 # ghZ
        1 0 # 3 times electric charge
        2 -1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 9000003 # ghWp
        1 3 # 3 times electric charge
        2 -1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 9000004 # ghWm
        1 -3 # 3 times electric charge
        2 -1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 9000005 # ghG
        1 0 # 3 times electric charge
        2 -1 # number of spin states (2S+1)
        3 8 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 250 # G0
        1 0 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 0 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 251 # G+
        1 3 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)

PROC_CARD tWa

#************************************************************
#* MadGraph5_aMC@NLO *
#* *
#* * * *
#* * * * * *
#* * * * * 5 * * * * *
#* * * * * *
#* * * *
#* *
#* *
#* VERSION 3.3.2 2022-03-18 *
#* *
#* The MadGraph5_aMC@NLO Development Team - Find us at *
#* https://server06.fynu.ucl.ac.be/projects/madgraph *
#* *
#************************************************************
#* *
#* Command File for MadGraph5_aMC@NLO *
#* *
#* run as ./bin/mg5_aMC filename *
#* *
#************************************************************
set group_subprocesses Auto
set ignore_six_quark_processes False
set low_mem_multicore_nlo_generation False
set complex_mass_scheme False
set include_lepton_initiated_processes False
set gauge unitary
set loop_optimized_output True
set loop_color_flows False
set max_npoint_for_channel 0
set default_unset_couplings 99
set max_t_for_channel 99
set zerowidth_tchannel True
set nlo_mixed_expansion True
import model sm
define p = g u c d s u~ c~ d~ s~
define j = g u c d s u~ c~ d~ s~
define l+ = e+ mu+
define l- = e- mu-
define vl = ve vm vt
define vl~ = ve~ vm~ vt~
import model SMEFTatNLO-NLO
define p = 21 2 4 1 3 -2 -4 -1 -3 5 -5 # pass to 5 flavors
define j = p
define w = w+ w-
define tt = t t~
generate p p > tt w a QED=2 QCD=1 NP=2 [QCD]
output twa_SMEFT_DR1

run_banner tWa

<LesHouchesEvents version="3.0">
<header>
<!--
#*********************************************************************
# *
# MadGraph5_aMC@NLO *
# *
# http://madgraph.hep.uiuc.edu *
# http://madgraph.phys.ucl.ac.be *
# http://amcatnlo.cern.ch *
# *
# The MadGraph5_aMC@NLO team *
# *
#....................................................................*
# *
# This file contains all the information necessary to reproduce *
# the events generated *
# *
# 1. software version *
# 2. proc_card.dat : code generation info including model *
# 3. param_card.dat : model primary parameters in the LH format *
# 4. run_card.dat : running parameters (collider and cuts) *
# *
# *
#*********************************************************************
-->
<MGVersion>
#5.3.3.2
</MGVersion>
<MGRunCard>
<![CDATA[
#***********************************************************************
# MadGraph5_aMC@NLO *
# *
# run_card.dat aMC@NLO *
# *
# This file is used to set the parameters of the run. *
# *
# Some notation/conventions: *
# *
# Lines starting with a hash (#) are info or comments *
# *
# mind the format: value = variable ! comment *
# *
# Some of the values of variables can be list. These can either be *
# comma or space separated. *
# *
# To display additional parameter, you can use the command: *
# update to_full *
#***********************************************************************
#
#*******************
# Running parameters
#*******************
#
#***********************************************************************
# Tag name for the run (one word) *
#***********************************************************************
  tag_1 = run_tag ! name of the run
#***********************************************************************
# Number of LHE events (and their normalization) and the required *
# (relative) accuracy on the Xsec. *
# These values are ignored for fixed order runs *
#***********************************************************************
 10000 = nevents ! Number of unweighted events requested
 -1.0 = req_acc ! Required accuracy (-1=auto determined from nevents)
 -1 = nevt_job! Max number of events per job in event generation.
                 ! (-1= no split).
#***********************************************************************
# Output format
#***********************************************************************
  -1.0 = time_of_flight ! threshold (in mm) below which the invariant livetime is not written (-1 means not written)
  average = event_norm ! average/sum/bias. Normalization of the weight in the LHEF
#***********************************************************************
# Number of points per itegration channel (ignored for aMC@NLO runs) *
#***********************************************************************
 0.9 = req_acc_FO ! Required accuracy (-1=ignored, and use the
                     ! number of points and iter. below)
# These numbers are ignored except if req_acc_FO is equal to -1
 5000 = npoints_FO_grid ! number of points to setup grids
 4 = niters_FO_grid ! number of iter. to setup grids
 10000 = npoints_FO ! number of points to compute Xsec
 6 = niters_FO ! number of iter. to compute Xsec
#***********************************************************************
# Random number seed *
#***********************************************************************
 0 = iseed ! rnd seed (0=assigned automatically=default))
#***********************************************************************
# Collider type and energy *
#***********************************************************************
 1 = lpp1 ! beam 1 type (0 = no PDF)
 1 = lpp2 ! beam 2 type (0 = no PDF)
 6500.0 = ebeam1 ! beam 1 energy in GeV
 6500.0 = ebeam2 ! beam 2 energy in GeV
#***********************************************************************
# PDF choice: this automatically fixes also alpha_s(MZ) and its evol. *
#***********************************************************************
 nn23nlo = pdlabel ! PDF set
 244600 = lhaid ! If pdlabel=lhapdf, this is the lhapdf number. Only
              ! numbers for central PDF sets are allowed. Can be a list;
              ! PDF sets beyond the first are included via reweighting.
#***********************************************************************
# Include the NLO Monte Carlo subtr. terms for the following parton *
# shower (HERWIG6 | HERWIGPP | PYTHIA6Q | PYTHIA6PT | PYTHIA8) *
# WARNING: PYTHIA6PT works only for processes without FSR!!!! *
#***********************************************************************
  HERWIG6 = parton_shower
  1.0 = shower_scale_factor ! multiply default shower starting
                                  ! scale by this factor
#***********************************************************************
# Renormalization and factorization scales *
# (Default functional form for the non-fixed scales is the sum of *
# the transverse masses divided by two of all final state particles *
# and partons. This can be changed in SubProcesses/set_scales.f or via *
# dynamical_scale_choice option) *
#***********************************************************************
 False = fixed_ren_scale ! if .true. use fixed ren scale
 False = fixed_fac_scale ! if .true. use fixed fac scale
 91.118 = muR_ref_fixed ! fixed ren reference scale
 91.118 = muF_ref_fixed ! fixed fact reference scale
 -1 = dynamical_scale_choice ! Choose one (or more) of the predefined
           ! dynamical choices. Can be a list; scale choices beyond the
           ! first are included via reweighting
 1.0 = muR_over_ref ! ratio of current muR over reference muR
 1.0 = muF_over_ref ! ratio of current muF over reference muF
#***********************************************************************
# Reweight variables for scale dependence and PDF uncertainty *
#***********************************************************************
 1.0, 2.0, 0.5 = rw_rscale ! muR factors to be included by reweighting
 1.0, 2.0, 0.5 = rw_fscale ! muF factors to be included by reweighting
 True = reweight_scale ! Reweight to get scale variation using the
            ! rw_rscale and rw_fscale factors. Should be a list of
            ! booleans of equal length to dynamical_scale_choice to
            ! specify for which choice to include scale dependence.
 False = reweight_PDF ! Reweight to get PDF uncertainty. Should be a
            ! list booleans of equal length to lhaid to specify for
            ! which PDF set to include the uncertainties.
#***********************************************************************
# Store reweight information in the LHE file for off-line model- *
# parameter reweighting at NLO+PS accuracy *
#***********************************************************************
 False = store_rwgt_info ! Store info for reweighting in LHE file
#***********************************************************************
# ickkw parameter: *
# 0: No merging *
# 3: FxFx Merging - WARNING! Applies merging only at the hard-event *
# level. After showering an MLM-type merging should be applied as *
# well. See http://amcatnlo.cern.ch/FxFx_merging.htm for details. *
# 4: UNLOPS merging (with pythia8 only). No interface from within *
# MG5_aMC available, but available in Pythia8. *
# -1: NNLL+NLO jet-veto computation. See arxiv:1412.8408 [hep-ph]. *
#***********************************************************************
 0 = ickkw
#***********************************************************************
#
#***********************************************************************
# BW cutoff (M+/-bwcutoff*Gamma). Determines which resonances are *
# written in the LHE event file *
#***********************************************************************
 15.0 = bwcutoff
#***********************************************************************
# Cuts on the jets. Jet clustering is performed by FastJet. *
# - If gamma_is_j, photons are also clustered with jets. *
# Otherwise, they will be treated as tagged particles and photon *
# isolation will be applied. Note that photons in the real emission *
# will always be clustered with QCD partons. *
# - When matching to a parton shower, these generation cuts should be *
# considerably softer than the analysis cuts. *
# - More specific cuts can be specified in SubProcesses/cuts.f *
#***********************************************************************
  1.0 = jetalgo ! FastJet jet algorithm (1=kT, 0=C/A, -1=anti-kT)
  0.7 = jetradius ! The radius parameter for the jet algorithm
 10.0 = ptj ! Min jet transverse momentum
 -1.0 = etaj ! Max jet abs(pseudo-rap) (a value .lt.0 means no cut)
 False = gamma_is_j! Wether to cluster photons as jets or not
#***********************************************************************
# Cuts on the charged leptons (e+, e-, mu+, mu-, tau+ and tau-) *
# More specific cuts can be specified in SubProcesses/cuts.f *
#***********************************************************************
  0.0 = ptl ! Min lepton transverse momentum
 -1.0 = etal ! Max lepton abs(pseudo-rap) (a value .lt.0 means no cut)
  0.0 = drll ! Min distance between opposite sign lepton pairs
  0.0 = drll_sf ! Min distance between opp. sign same-flavor lepton pairs
  0.0 = mll ! Min inv. mass of all opposite sign lepton pairs
  30.0 = mll_sf ! Min inv. mass of all opp. sign same-flavor lepton pairs
#***********************************************************************
# Fermion-photon recombination parameters *
# If Rphreco=0, no recombination is performed *
#***********************************************************************
 0.1 = Rphreco ! Minimum fermion-photon distance for recombination
 -1.0 = etaphreco ! Maximum abs(pseudo-rap) for photons to be recombined (a value .lt.0 means no cut)
 False = lepphreco ! Recombine photons and leptons together
 False = quarkphreco ! Recombine photons and quarks together
#***********************************************************************
# Photon-isolation cuts, according to hep-ph/9801442 *
# Not applied if gamma_is_j *
# When ptgmin=0, all the other parameters are ignored *
# More specific cuts can be specified in SubProcesses/cuts.f *
#***********************************************************************
  20.0 = ptgmin ! Min photon transverse momentum
# 20.0 = ptgmin ! Min photon transverse momentum
  -1.0 = etagamma ! Max photon abs(pseudo-rap)
  0.4 = R0gamma ! Radius of isolation code
  1.0 = xn ! n parameter of eq.(3.4) in hep-ph/9801442
  1.0 = epsgamma ! epsilon_gamma parameter of eq.(3.4) in hep-ph/9801442
 True = isoEM ! isolate photons from EM energy (photons and leptons)
#***********************************************************************
# Cuts associated to MASSIVE particles identified by their PDG codes. *
# All cuts are applied to both particles and anti-particles, so use *
# POSITIVE PDG CODES only. Example of the syntax is {6 : 100} or *
# {6:100, 25:200} for multiple particles *
#***********************************************************************
  {} = pt_min_pdg ! Min pT for a massive particle
  {} = pt_max_pdg ! Max pT for a massive particle
  {} = mxx_min_pdg ! inv. mass for any pair of (anti)particles
#***********************************************************************
# Use PineAPPL to generate PDF-independent fast-interpolation grid *
# (https://zenodo.org/record/3992765#.X2EWy5MzbVo) *
#***********************************************************************
 False = pineappl ! PineAPPL switch
#***********************************************************************
]]>
</MGRunCard>
<slha>
######################################################################
## PARAM_CARD AUTOMATICALY GENERATED BY MG5 FOLLOWING UFO MODEL ####
######################################################################
## ##
## Width set on Auto will be computed following the information ##
## present in the decay.py files of the model. ##
## See arXiv:1402.1178 for more details. ##
## ##
######################################################################

###################################
## INFORMATION FOR DIM6
###################################
Block dim6
    1 1.000000e+03 # Lambda

###################################
## INFORMATION FOR DIM62F
###################################
Block dim62f
# 22 4.997300e-02 # ctZ
# 23 7.619010e-01 # ctW
   22 0.0 # ctZ
   23 0.0 # ctW

###################################
## INFORMATION FOR MASS
###################################
Block mass
    6 1.720000e+02 # MT
   23 9.118760e+01 # MZ
   24 7.982440e+01 # MW
   25 1.250000e+02 # MH
## Dependent parameters, given by model restrictions.
## Those values should be edited following the
## analytical expression. MG5 ignores those values
## but they are important for interfacing the output of MG5
## to external program such as Pythia.
  1 0.000000e+00 # d : 0.0
  2 0.000000e+00 # u : 0.0
  3 0.000000e+00 # s : 0.0
  4 0.000000e+00 # c : 0.0
  5 0.000000e+00 # b : 0.0
  11 0.000000e+00 # e- : 0.0
  12 0.000000e+00 # ve : 0.0
  13 0.000000e+00 # mu- : 0.0
  14 0.000000e+00 # vm : 0.0
  15 0.000000e+00 # ta- : 0.0
  16 0.000000e+00 # vt : 0.0
  21 0.000000e+00 # g : 0.0
  22 0.000000e+00 # a : 0.0
  9000002 9.118760e+01 # ghz : MZ
  9000003 7.982440e+01 # ghwp : MW
  9000004 7.982440e+01 # ghwm : MW

###################################
## INFORMATION FOR RENOR
###################################
Block renor
    1 5.550000e+02 # mueft

###################################
## INFORMATION FOR SMINPUTS
###################################
Block sminputs
    2 1.166370e-05 # Gf
    3 1.184000e-01 # aS (Note that Parameter not used if you use a PDF set)

###################################
## INFORMATION FOR YUKAWA
###################################
Block yukawa
    6 1.720000e+02 # ymt

###################################
## INFORMATION FOR DECAY
###################################
#DECAY 6 1.508336e+00 # WT
#DECAY 23 2.495200e+00 # WZ
DECAY 6 0.0
DECAY 23 0.0
## Dependent parameters, given by model restrictions.
## Those values should be edited following the
## analytical expression. MG5 ignores those values
## but they are important for interfacing the output of MG5
## to external program such as Pythia.
DECAY 1 0.000000e+00 # d : 0.0
DECAY 2 0.000000e+00 # u : 0.0
DECAY 3 0.000000e+00 # s : 0.0
DECAY 4 0.000000e+00 # c : 0.0
DECAY 5 0.000000e+00 # b : 0.0
DECAY 11 0.000000e+00 # e- : 0.0
DECAY 12 0.000000e+00 # ve : 0.0
DECAY 13 0.000000e+00 # mu- : 0.0
DECAY 14 0.000000e+00 # vm : 0.0
DECAY 15 0.000000e+00 # ta- : 0.0
DECAY 16 0.000000e+00 # vt : 0.0
DECAY 21 0.000000e+00 # g : 0.0
DECAY 22 0.000000e+00 # a : 0.0
DECAY 24 0.000000e+00 # w+ : 0.0
DECAY 25 0.000000e+00 # h : 0.0
#DECAY 9000002 2.495200e+00 # ghz : WZ
DECAY 9000002 0.000000e+00 # ghz : WZ
#===========================================================
# QUANTUM NUMBERS OF NEW STATE(S) (NON SM PDG CODE)
#===========================================================

Block QNUMBERS 9000001 # gha
        1 0 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 9000002 # ghz
        1 0 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 9000003 # ghwp
        1 3 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 9000004 # ghwm
        1 -3 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 9000005 # ghg
        1 0 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 8 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
</slha>
<run_settings>
order = NLO
fixed_order = ON
shower = OFF
madspin = OFF
reweight = OFF
madanalysis = OFF
runshower = False
</run_settings>
<foanalyse>
<![CDATA[
#######################################################################
#
# This file contains the settings for analyses to be linked to fixed
# order runs. Analysis files are meant to be put (or linked) inside
# <PROCDIR>/FixedOrderAnalysis/ (<PROCDIR> is the name of the exported
# process directory). See the
# <PROCDIR>/FixedOrderAnalysis/analysis_*_template.f file for details
# on how to write your own analysis.
#
#######################################################################
#
# Analysis format.
# Can either be 'topdrawer', 'root', 'HwU', 'LHE' or 'none'.
# When choosing HwU, it comes with a GnuPlot wrapper. When choosing
# topdrawer, the histogramming package 'dbook.f' is included in the
# code, while when choosing root the 'rbook_fe8.f' and 'rbook_be8.cc'
# are included. If 'none' is chosen, all the other entries below have
# to be set empty.
FO_ANALYSIS_FORMAT = HwU
#
#
# Needed extra-libraries (FastJet is already linked):
FO_EXTRALIBS =
#
# (Absolute) path to the extra libraries. Directory names should be
# separated by white spaces.
FO_EXTRAPATHS =
#
# (Absolute) path to the dirs containing header files needed by the
# libraries (e.g. C++ header files):
FO_INCLUDEPATHS =
#
# User's analysis (to be put in the <PROCDIR>/FixedOrderAnalysis/
# directory). Please use .o as extension and white spaces to separate
# files.
FO_ANALYSE = analysis_HwU_twa.o
#
#
## When linking with root, the following settings are a working
## example on lxplus (CERN) as of July 2014. When using this, comment
## out the lines above and replace <PATH_TO_ROOT> with the physical
## path to root,
## e.g. /afs/cern.ch/sw/lcg/app/releases/ROOT/5.34.11/x86_64-slc6-gcc46-dbg/root/
#FO_ANALYSIS_FORMAT = root
#FO_EXTRALIBS = Core Cint Hist Matrix MathCore RIO dl Thread
#FO_EXTRAPATHS = <PATH_TO_ROOT>/lib
#FO_INCLUDEPATHS = <PATH_TO_ROOT>/include
#FO_ANALYSE = analysis_root_template.o
]]>
</foanalyse>
</header>
</LesHouchesEvents>

PROC_CARD tqa

#************************************************************
#* MadGraph5_aMC@NLO *
#* *
#* * * *
#* * * * * *
#* * * * * 5 * * * * *
#* * * * * *
#* * * *
#* *
#* *
#* VERSION 3.3.2 2022-03-18 *
#* *
#* The MadGraph5_aMC@NLO Development Team - Find us at *
#* https://server06.fynu.ucl.ac.be/projects/madgraph *
#* *
#************************************************************
#* *
#* Command File for MadGraph5_aMC@NLO *
#* *
#* run as ./bin/mg5_aMC filename *
#* *
#************************************************************
set group_subprocesses Auto
set ignore_six_quark_processes False
set low_mem_multicore_nlo_generation False
set complex_mass_scheme False
set include_lepton_initiated_processes False
set gauge unitary
set loop_optimized_output True
set loop_color_flows False
set max_npoint_for_channel 0
set default_unset_couplings 99
set max_t_for_channel 99
set zerowidth_tchannel True
set nlo_mixed_expansion True
import model sm
define p = g u c d s u~ c~ d~ s~
define j = g u c d s u~ c~ d~ s~
define l+ = e+ mu+
define l- = e- mu-
define vl = ve vm vt
define vl~ = ve~ vm~ vt~
import model SMEFTatNLO-NLO
define p = 21 2 4 1 3 -2 -4 -1 -3 5 -5 # pass to 5 flavors
define j = p
generate p p > t j a NP^2=4 QED^2=9 QCD^2=0 [all=QCD]
output tqa_SMEFT_sq_ord

run_banner tqa

<LesHouchesEvents version="3.0">
<header>
<!--
#*********************************************************************
# *
# MadGraph5_aMC@NLO *
# *
# http://madgraph.hep.uiuc.edu *
# http://madgraph.phys.ucl.ac.be *
# http://amcatnlo.cern.ch *
# *
# The MadGraph5_aMC@NLO team *
# *
#....................................................................*
# *
# This file contains all the information necessary to reproduce *
# the events generated *
# *
# 1. software version *
# 2. proc_card.dat : code generation info including model *
# 3. param_card.dat : model primary parameters in the LH format *
# 4. run_card.dat : running parameters (collider and cuts) *
# *
# *
#*********************************************************************
-->
<MGVersion>
#5.3.3.2
</MGVersion>
<MGRunCard>
<![CDATA[
#***********************************************************************
# MadGraph5_aMC@NLO *
# *
# run_card.dat aMC@NLO *
# *
# This file is used to set the parameters of the run. *
# *
# Some notation/conventions: *
# *
# Lines starting with a hash (#) are info or comments *
# *
# mind the format: value = variable ! comment *
# *
# Some of the values of variables can be list. These can either be *
# comma or space separated. *
# *
# To display additional parameter, you can use the command: *
# update to_full *
#***********************************************************************
#
#*******************
# Running parameters
#*******************
#
#***********************************************************************
# Tag name for the run (one word) *
#***********************************************************************
  tag_1 = run_tag ! name of the run
#***********************************************************************
# Number of LHE events (and their normalization) and the required *
# (relative) accuracy on the Xsec. *
# These values are ignored for fixed order runs *
#***********************************************************************
 10000 = nevents ! Number of unweighted events requested
 -1.0 = req_acc ! Required accuracy (-1=auto determined from nevents)
 -1 = nevt_job! Max number of events per job in event generation.
                 ! (-1= no split).
#***********************************************************************
# Output format
#***********************************************************************
  -1.0 = time_of_flight ! threshold (in mm) below which the invariant livetime is not written (-1 means not written)
  average = event_norm ! average/sum/bias. Normalization of the weight in the LHEF
#***********************************************************************
# Number of points per itegration channel (ignored for aMC@NLO runs) *
#***********************************************************************
 0.9 = req_acc_FO ! Required accuracy (-1=ignored, and use the
                     ! number of points and iter. below)
# These numbers are ignored except if req_acc_FO is equal to -1
 5000 = npoints_FO_grid ! number of points to setup grids
 4 = niters_FO_grid ! number of iter. to setup grids
 10000 = npoints_FO ! number of points to compute Xsec
 6 = niters_FO ! number of iter. to compute Xsec
#***********************************************************************
# Random number seed *
#***********************************************************************
 0 = iseed ! rnd seed (0=assigned automatically=default))
#***********************************************************************
# Collider type and energy *
#***********************************************************************
 1 = lpp1 ! beam 1 type (0 = no PDF)
 1 = lpp2 ! beam 2 type (0 = no PDF)
 6500.0 = ebeam1 ! beam 1 energy in GeV
 6500.0 = ebeam2 ! beam 2 energy in GeV
#***********************************************************************
# PDF choice: this automatically fixes also alpha_s(MZ) and its evol. *
#***********************************************************************
 nn23nlo = pdlabel ! PDF set
 244600 = lhaid ! If pdlabel=lhapdf, this is the lhapdf number. Only
              ! numbers for central PDF sets are allowed. Can be a list;
              ! PDF sets beyond the first are included via reweighting.
#***********************************************************************
# Include the NLO Monte Carlo subtr. terms for the following parton *
# shower (HERWIG6 | HERWIGPP | PYTHIA6Q | PYTHIA6PT | PYTHIA8) *
# WARNING: PYTHIA6PT works only for processes without FSR!!!! *
#***********************************************************************
  HERWIG6 = parton_shower
  1.0 = shower_scale_factor ! multiply default shower starting
                                  ! scale by this factor
#***********************************************************************
# Renormalization and factorization scales *
# (Default functional form for the non-fixed scales is the sum of *
# the transverse masses divided by two of all final state particles *
# and partons. This can be changed in SubProcesses/set_scales.f or via *
# dynamical_scale_choice option) *
#***********************************************************************
 False = fixed_ren_scale ! if .true. use fixed ren scale
 False = fixed_fac_scale ! if .true. use fixed fac scale
 91.118 = muR_ref_fixed ! fixed ren reference scale
 91.118 = muF_ref_fixed ! fixed fact reference scale
 -1 = dynamical_scale_choice ! Choose one (or more) of the predefined
           ! dynamical choices. Can be a list; scale choices beyond the
           ! first are included via reweighting
 1.0 = muR_over_ref ! ratio of current muR over reference muR
 1.0 = muF_over_ref ! ratio of current muF over reference muF
#***********************************************************************
# Reweight variables for scale dependence and PDF uncertainty *
#***********************************************************************
 1.0, 2.0, 0.5 = rw_rscale ! muR factors to be included by reweighting
 1.0, 2.0, 0.5 = rw_fscale ! muF factors to be included by reweighting
 True = reweight_scale ! Reweight to get scale variation using the
            ! rw_rscale and rw_fscale factors. Should be a list of
            ! booleans of equal length to dynamical_scale_choice to
            ! specify for which choice to include scale dependence.
 False = reweight_PDF ! Reweight to get PDF uncertainty. Should be a
            ! list booleans of equal length to lhaid to specify for
            ! which PDF set to include the uncertainties.
#***********************************************************************
# Store reweight information in the LHE file for off-line model- *
# parameter reweighting at NLO+PS accuracy *
#***********************************************************************
 False = store_rwgt_info ! Store info for reweighting in LHE file
#***********************************************************************
# ickkw parameter: *
# 0: No merging *
# 3: FxFx Merging - WARNING! Applies merging only at the hard-event *
# level. After showering an MLM-type merging should be applied as *
# well. See http://amcatnlo.cern.ch/FxFx_merging.htm for details. *
# 4: UNLOPS merging (with pythia8 only). No interface from within *
# MG5_aMC available, but available in Pythia8. *
# -1: NNLL+NLO jet-veto computation. See arxiv:1412.8408 [hep-ph]. *
#***********************************************************************
 0 = ickkw
#***********************************************************************
#
#***********************************************************************
# BW cutoff (M+/-bwcutoff*Gamma). Determines which resonances are *
# written in the LHE event file *
#***********************************************************************
 15.0 = bwcutoff
#***********************************************************************
# Cuts on the jets. Jet clustering is performed by FastJet. *
# - If gamma_is_j, photons are also clustered with jets. *
# Otherwise, they will be treated as tagged particles and photon *
# isolation will be applied. Note that photons in the real emission *
# will always be clustered with QCD partons. *
# - When matching to a parton shower, these generation cuts should be *
# considerably softer than the analysis cuts. *
# - More specific cuts can be specified in SubProcesses/cuts.f *
#***********************************************************************
  1.0 = jetalgo ! FastJet jet algorithm (1=kT, 0=C/A, -1=anti-kT)
  0.7 = jetradius ! The radius parameter for the jet algorithm
 10.0 = ptj ! Min jet transverse momentum
 -1.0 = etaj ! Max jet abs(pseudo-rap) (a value .lt.0 means no cut)
 True = gamma_is_j! Wether to cluster photons as jets or not
#***********************************************************************
# Cuts on the charged leptons (e+, e-, mu+, mu-, tau+ and tau-) *
# More specific cuts can be specified in SubProcesses/cuts.f *
#***********************************************************************
  0.0 = ptl ! Min lepton transverse momentum
 -1.0 = etal ! Max lepton abs(pseudo-rap) (a value .lt.0 means no cut)
  0.0 = drll ! Min distance between opposite sign lepton pairs
  0.0 = drll_sf ! Min distance between opp. sign same-flavor lepton pairs
  0.0 = mll ! Min inv. mass of all opposite sign lepton pairs
  30.0 = mll_sf ! Min inv. mass of all opp. sign same-flavor lepton pairs
#***********************************************************************
# Fermion-photon recombination parameters *
# If Rphreco=0, no recombination is performed *
#***********************************************************************
 0.1 = Rphreco ! Minimum fermion-photon distance for recombination
 -1.0 = etaphreco ! Maximum abs(pseudo-rap) for photons to be recombined (a value .lt.0 means no cut)
 True = lepphreco ! Recombine photons and leptons together
 True = quarkphreco ! Recombine photons and quarks together
#***********************************************************************
# Photon-isolation cuts, according to hep-ph/9801442 *
# Not applied if gamma_is_j *
# When ptgmin=0, all the other parameters are ignored *
# More specific cuts can be specified in SubProcesses/cuts.f *
#***********************************************************************
  20.0 = ptgmin ! Min photon transverse momentum
  -1.0 = etagamma ! Max photon abs(pseudo-rap)
  0.4 = R0gamma ! Radius of isolation code
  1.0 = xn ! n parameter of eq.(3.4) in hep-ph/9801442
  1.0 = epsgamma ! epsilon_gamma parameter of eq.(3.4) in hep-ph/9801442
 True = isoEM ! isolate photons from EM energy (photons and leptons)
#***********************************************************************
# Cuts associated to MASSIVE particles identified by their PDG codes. *
# All cuts are applied to both particles and anti-particles, so use *
# POSITIVE PDG CODES only. Example of the syntax is {6 : 100} or *
# {6:100, 25:200} for multiple particles *
#***********************************************************************
  {} = pt_min_pdg ! Min pT for a massive particle
  {} = pt_max_pdg ! Max pT for a massive particle
  {} = mxx_min_pdg ! inv. mass for any pair of (anti)particles
#***********************************************************************
# Use PineAPPL to generate PDF-independent fast-interpolation grid *
# (https://zenodo.org/record/3992765#.X2EWy5MzbVo) *
#***********************************************************************
 False = pineappl ! PineAPPL switch
#***********************************************************************
]]>
</MGRunCard>
<slha>
######################################################################
## PARAM_CARD AUTOMATICALY GENERATED BY MG5 FOLLOWING UFO MODEL ####
######################################################################
## ##
## Width set on Auto will be computed following the information ##
## present in the decay.py files of the model. ##
## See arXiv:1402.1178 for more details. ##
## ##
######################################################################

###################################
## INFORMATION FOR DIM6
###################################
Block dim6
    1 1.000000e+03 # Lambda

###################################
## INFORMATION FOR DIM62F
###################################
Block dim62f
   22 4.997300e-02 # ctZ
   23 7.619010e-01 # ctW

###################################
## INFORMATION FOR MASS
###################################
Block mass
    6 1.720000e+02 # MT
   23 9.118760e+01 # MZ
   24 7.982440e+01 # MW
   25 1.250000e+02 # MH
## Dependent parameters, given by model restrictions.
## Those values should be edited following the
## analytical expression. MG5 ignores those values
## but they are important for interfacing the output of MG5
## to external program such as Pythia.
  1 0.000000e+00 # d : 0.0
  2 0.000000e+00 # u : 0.0
  3 0.000000e+00 # s : 0.0
  4 0.000000e+00 # c : 0.0
  5 0.000000e+00 # b : 0.0
  11 0.000000e+00 # e- : 0.0
  12 0.000000e+00 # ve : 0.0
  13 0.000000e+00 # mu- : 0.0
  14 0.000000e+00 # vm : 0.0
  15 0.000000e+00 # ta- : 0.0
  16 0.000000e+00 # vt : 0.0
  21 0.000000e+00 # g : 0.0
  22 0.000000e+00 # a : 0.0
  9000002 9.118760e+01 # ghz : MZ
  9000003 7.982440e+01 # ghwp : MW
  9000004 7.982440e+01 # ghwm : MW

###################################
## INFORMATION FOR RENOR
###################################
Block renor
    1 5.550000e+02 # mueft

###################################
## INFORMATION FOR SMINPUTS
###################################
Block sminputs
    2 1.166370e-05 # Gf
    3 1.184000e-01 # aS (Note that Parameter not used if you use a PDF set)

###################################
## INFORMATION FOR YUKAWA
###################################
Block yukawa
    6 1.720000e+02 # ymt

###################################
## INFORMATION FOR DECAY
###################################
DECAY 6 1.508336e+00 # WT
DECAY 23 2.495200e+00 # WZ
## Dependent parameters, given by model restrictions.
## Those values should be edited following the
## analytical expression. MG5 ignores those values
## but they are important for interfacing the output of MG5
## to external program such as Pythia.
DECAY 1 0.000000e+00 # d : 0.0
DECAY 2 0.000000e+00 # u : 0.0
DECAY 3 0.000000e+00 # s : 0.0
DECAY 4 0.000000e+00 # c : 0.0
DECAY 5 0.000000e+00 # b : 0.0
DECAY 11 0.000000e+00 # e- : 0.0
DECAY 12 0.000000e+00 # ve : 0.0
DECAY 13 0.000000e+00 # mu- : 0.0
DECAY 14 0.000000e+00 # vm : 0.0
DECAY 15 0.000000e+00 # ta- : 0.0
DECAY 16 0.000000e+00 # vt : 0.0
DECAY 21 0.000000e+00 # g : 0.0
DECAY 22 0.000000e+00 # a : 0.0
DECAY 24 0.000000e+00 # w+ : 0.0
DECAY 25 0.000000e+00 # h : 0.0
DECAY 9000002 2.495200e+00 # ghz : WZ
#===========================================================
# QUANTUM NUMBERS OF NEW STATE(S) (NON SM PDG CODE)
#===========================================================

Block QNUMBERS 9000001 # gha
        1 0 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 9000002 # ghz
        1 0 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 9000003 # ghwp
        1 3 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 9000004 # ghwm
        1 -3 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 9000005 # ghg
        1 0 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 8 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
</slha>
<run_settings>
order = NLO
fixed_order = ON
shower = OFF
madspin = OFF
reweight = OFF
madanalysis = OFF
runshower = False
</run_settings>
<foanalyse>
<![CDATA[
#######################################################################
#
# This file contains the settings for analyses to be linked to fixed
# order runs. Analysis files are meant to be put (or linked) inside
# <PROCDIR>/FixedOrderAnalysis/ (<PROCDIR> is the name of the exported
# process directory). See the
# <PROCDIR>/FixedOrderAnalysis/analysis_*_template.f file for details
# on how to write your own analysis.
#
#######################################################################
#
# Analysis format.
# Can either be 'topdrawer', 'root', 'HwU', 'LHE' or 'none'.
# When choosing HwU, it comes with a GnuPlot wrapper. When choosing
# topdrawer, the histogramming package 'dbook.f' is included in the
# code, while when choosing root the 'rbook_fe8.f' and 'rbook_be8.cc'
# are included. If 'none' is chosen, all the other entries below have
# to be set empty.
FO_ANALYSIS_FORMAT = HwU
#
#
# Needed extra-libraries (FastJet is already linked):
FO_EXTRALIBS =
#
# (Absolute) path to the extra libraries. Directory names should be
# separated by white spaces.
FO_EXTRAPATHS =
#
# (Absolute) path to the dirs containing header files needed by the
# libraries (e.g. C++ header files):
FO_INCLUDEPATHS =
#
# User's analysis (to be put in the <PROCDIR>/FixedOrderAnalysis/
# directory). Please use .o as extension and white spaces to separate
# files.
FO_ANALYSE = analysis_HwU_template.o
#
#
## When linking with root, the following settings are a working
## example on lxplus (CERN) as of July 2014. When using this, comment
## out the lines above and replace <PATH_TO_ROOT> with the physical
## path to root,
## e.g. /afs/cern.ch/sw/lcg/app/releases/ROOT/5.34.11/x86_64-slc6-gcc46-dbg/root/
#FO_ANALYSIS_FORMAT = root
#FO_EXTRALIBS = Core Cint Hist Matrix MathCore RIO dl Thread
#FO_EXTRAPATHS = <PATH_TO_ROOT>/lib
#FO_INCLUDEPATHS = <PATH_TO_ROOT>/include
#FO_ANALYSE = analysis_root_template.o
]]>
</foanalyse>
</header>
</LesHouchesEvents>

Question information

Language:
English Edit question
Status:
Open
For:
MadGraph5_aMC@NLO Edit question
Assignee:
marco zaro Edit question
Last query:
Last reply:
Revision history for this message
marco zaro (marco-zaro) said :
#1

Dear Michele,
before tackling the problem:
do twa or tqa work with the plain SM?

Let me know

Cheers,

Marco

Revision history for this message
Olivier Mattelaer (olivier-mattelaer) said :
#2

For twa since you are in five flavour, I would expect you to use MadSTR to remove the tt~a contribution, are you doing that?

Revision history for this message
Michele Mormile (mmor) said :
#3

Dear Marco, Olivier,

the SM works for tWa, where I apply the DR by putting the amplitudes to 0 'by hand' in order to the remove the 1->3 body decays.
I do the same for SMEFT, with the addition that I also remove the resonant diagrams where the EFT vertices appear.

Interestingly, tqa in the 5FS doesn't work even at plain SM level, because of segmentation faults in fortran.
Nevertheless, I was just using it as a benchmark, as the process that I am interested in is the tWa production.

Cheers,
Michele

Can you help with this problem?

Provide an answer of your own, or ask Michele Mormile for more information if necessary.

To post a message you must log in.